Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays
نویسندگان
چکیده
The detection of copy number variants (CNV) by array-based platforms provides valuable insight into understanding human diversity. However, suboptimal study design and data processing negatively affect CNV assessment. We quantitatively evaluate their impact when short-sequence oligonucleotide arrays are applied (Affymetrix Genome-Wide Human SNP Array 6.0) by evaluating 42 HapMap samples for CNV detection. Several processing and segmentation strategies are implemented, and results are compared to CNV assessment obtained using an oligonucleotide array CGH platform designed to query CNVs at high resolution (Agilent). We quantitatively demonstrate that different reference models (e.g. single versus pooled sample reference) used to detect CNVs are a major source of inter-platform discrepancy (up to 30%) and that CNVs residing within segmental duplication regions (higher reference copy number) are significantly harder to detect (P < 0.0001). After adjusting Affymetrix data to mimic the Agilent experimental design (reference sample effect), we applied several common segmentation approaches and evaluated differential sensitivity and specificity for CNV detection, ranging 39-77% and 86-100% for non-segmental duplication regions, respectively, and 18-55% and 39-77% for segmental duplications. Our results are relevant to any array-based CNV study and provide guidelines to optimize performance based on study-specific objectives.
منابع مشابه
Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype
Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide mi...
متن کاملCopy Number Variants and Common Disorders: Filling the Gaps and Exploring Complexity in Genome-Wide Association Studies
Genome-wide association scans (GWASs) using single nucleotide polymorphisms (SNPs) have been completed successfully for several common disorders and have detected over 30 new associations. Considering the large sample sizes and genome-wide SNP coverage of the scans, one might have expected many of the common variants underpinning the genetic component of various disorders to have been identifie...
متن کاملGenome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification.
Major efforts are underway to systematically define the somatic and germline genetic variations causally associated with disease. Genome-wide genetic analysis of actual clinical samples is, however, limited by the paucity of genomic DNA available. Here we have tested the fidelity and genome representation of phi29 polymerase-based genome amplification (phi29MDA) using direct sequencing and high...
متن کاملCNVineta: a data mining tool for large case–control copy number variation datasets
MOTIVATION Copy number variation (CNV), a major contributor to human genetic variation, comprises >/= 1 kb genomic deletions and insertions. Yet, the identification of CNVs from microarray data is still hampered by high false negative and positive prediction rates due to the noisy nature of the raw data. Here, we present CNVineta, an R package for rapid data mining and visualization of CNVs in ...
متن کاملGenome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays.
Recent reports indicate that copy number variations (CNVs) within the human genome contribute to nucleotide diversity to a larger extent than single nucleotide polymorphisms (SNPs). In addition, the contribution of CNVs to human disease susceptibility may be greater than previously expected, although a complete understanding of the phenotypic consequences of CNVs is incomplete. We have recently...
متن کامل